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Abstract—TotP is the class of all self-reducible counting problems in #P having decision version in P. Two TotP-complete problems under 
parsimonious reductions are Size-of-Subtree, and #CM-SAT. It is an important theorem that #SAT reduces to #CM-SAT under 
approximation preserving reductions. Sampling and approximate counting are often performed with the use of Markov chains. However for 
#SAT it is known that we cannot design irreducible Markov chains whose state space is the set of satisfying assignments of an input 
formula, due to a scattering phenomenon of the set of solutions. On the contrary, the set of solutions of #CM-SAT, as well as of Size-of-
Subtree, is connected in a particular way that permits the design of irreducible Markov chains. We design and study some Markov chains 
whose state space is the set of solutions of the above problems. We analyse their mixing time, their stationary distributions, and the 
complexity of computing the normalizing factors and the size of the support of the stationary distributions. Finally, we discuss the results in 
relation to the hardness of counting in TotP, and to other open problems in complexity theory. 

Index Terms—backtracking tree, computational complexity, counting complexity, Markov chains, randomized algorithms, sampling, #CM-
SAT, easy decision version, TotP  

——————————      —————————— 

1 INTRODUCTION                                                                     
HE complexity class #P [28] is the class of functions that 
count the number of accepting paths of an NPTM (Non-
deterministic Polynomial Time Turing Machine). Equiva-

lently, #P is the class of functions that count the number of 
solutions of a problem in NP. We often use the term 'counting 
problem' for such functions. 

The set of all self-reducible counting problems in #P having 
decision version in P is contained in a complexity class called 
TotP [1]. By saying 'decision version' of a counting problem, 
we mean the problem of deciding whether the value of the 
corresponding function on an input is non-zero. Equivalently, 
the decision version examines if there are any solutions to the 
corresponding NP problem, or any accepting computational 
paths of the corresponding NPTM. TotP is a proper subclass of 
#P unless P=NP [1]. 

There is a great number of problems, from many different 
scientific areas, that belong to TotP. For example such prob-
lems are: counting matchings, computing the determinant of a 
matrix, computing the partition function of several models 
from statistical physics, like the Ising and the hard-core model, 
counting colourings of a graph with a number of colors great-
er than the maximum degree, counting bases of a matroid, 
computing the volume of a convex body, counting independ-
ent sets, and many more. 

In [4] Bakali et.al.  showed the first completeness results for 
TotP, under parsimonious reductions, i.e. reductions that pre-
serve the number of solutions. The parsimoniously complete 
problems are representative of a class, in the sense that all the 
problems of the class are reduced to the complete ones, so 
each algorithmic result for one of the complete problems is 

automatically transferred to the whole class. 
Two such problems are Size-of-Subtree and Clustered-

Monotone-SAT (abr. #CM-SAT). The Size-of-Subtree is the 
problem of computing the size of a backtracking tree, without 
traversing it exhaustively, a problem firststudied by Knuth [5]. 
#CM-SAT [4] is the problem of computing the number of solu-
tions of a logical formula with the following properties: There 
is a tree of polynomial height whose nodes correspond to the 
satisfying assignments (or solutions) of this formula, such that 
for every given solution it is easy to get any adjacent to this 
solution, by making some appropriate transformations in pol-
ynomial time. In addition, it is easy to find the satisfying as-
signment corresponding to root of this tree in polynomial 
time. 

The #CM-SAT is in particular interesting because it turns 
out that the general #SAT reduces to #CM-SAT under approx-
imation preserving reductions [4]. That means that every logi-
cal formula can be reduced to another formula with the above 
mentioned properties so that we can approximate the number 
of solutions to the first one if and only if we can approximate 
the number of solutions to the second one. 

This fact is important because of the following phenome-
non that has arised from the study of random SAT. For formu-
las considered hard, the satisfying assignments are widely 
scattered in the space of all assignments [7], [8], [9]. The solu-
tions form clusters where is hard to find even one solution, 
and moreover even if you are given one solution in some clus-
ter, it is hard to find another one in a different cluster. The 
solutions do not seem to relate to each other in any algorith-
mically tractable way. This scattering explains the reason of 
failure of many algorithmic approaches for #SAT, and particu-
larly of methods that rely on Markov chains; In order to have a 
unique stationary distribution, it is essential for a Markov 
chain to be irreducible, i.e. it must be able to move from any 
state to any other at some time. But as we mentioned before, it 
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is not known how to construct a Markov chain with a state 
space that consists of the set of solutions of a formula with a 
scattered set of solutions. 

On the contrary, for the TotP-complete version of #SAT, 
namely #CMSAT, the situation is completely different. The 
solutions of an input formula build an easy neighbourhood 
structure, in particular a tree of polynomial height, such that 
from any solution it is easy to move to its neighbouring solu-
tions. 

This suggests that the study of Markov chains for #CM-
SAT as well as for other TotP-complete problems, which pre-
sent the same connectivity property of solutions, is a natural 
research direction. This is the direction that we follow in this 
paper. 

1.1 Some first approaches and arising questions 
A simple random walk on a perfect (i.e. full and complete) 

binary tree mixes in polynomial time with respect to the num-
ber of the nodes of the tree. However the tree under considera-
tion is the one we mentioned earlier, whose nodes are the sat-
isfying assignments of some input formula. As we said, for 
any input to #CM-SAT, the associated tree has polynomial 
height with respect to the size of the input, so we consider all 
running times with respect to the height of the tree. So the size 
of the perfect binary tree is exponential with respect to its 
height, and thus the running time of the simple random walk 
is exponential, as well. 

An intuitive reason for the slow mixing of the simple ran-
dom walk on the perfect binary tree is that from any internal 
node the probability of going a level down is twice the proba-
bility of going a level up, (since every internal node has two 
children, but one parent). 

So we thought of designing a Markov chain where the 
probability of going a level up equals the probability of going 
a level down. If n is the height of the tree, we can prove that 
the mixing time of this Markov chain equals the mixing time 
of a simple random walk on a path of length n, which is well 
known to be O(n2). 

We then generalize this Markov chain to every binary tree, 
not necessarily full or complete, and a number of questions 
arise: 

 
• Does this Markov chain on an arbitrary binary tree 

converge quickly? 
• Which is its stationary distribution? 
• Can we compute the normalizing factor of the sta-

tionary distribution? 
• Can we compute the size of the support of the sta-

tionary distribution? Note that the size of the sup-
port equals the size of the tree, and thus corre-
sponds exactly to the counting problem. 

• Can we reduce counting to computing the normal-
izing factor of the stationary distribution? Note 
that for the uniform distribution the normalizing 
factor is just a multiple of the size of the support, 
but as we will see, this is not the case for the sta-
tionary distributions of our Markov chains. 

• Can we have an FPRAS for the counting problem? 
(An FPRAS is a polynomial time approximation 

algorithm with an arbitrarily small multiplicative 
error). If not, what is the reason for this difficulty? 

1.2 Main results and discussion 
We first analyse two Markov chains on the perfect binary 

tree: (a) the simple random walk and (b) an Markov chain that 
from any internal node the probability of going to the parent is 
double the probability of going to each child. We prove that 
the second Markov chain is rapidly mixing. 

We then generalize the second Markov chain to an arbitrary 
binary tree. We define a family of Markov chains (PS)S, each 
having as states the nodes of a binary tree S, as follows. 

Let S be a subtree of the perfect binary tree T of height n, 
containing the root of T. We define the Markov chain PS over 
the nodes of S, with the following transition probabilities. 

 
pS(i,j) = 1∕2 if j is the parent of i,  
pS(i,j) = 1∕4 if j is a child of i,  
pS(i,j) = 0 for every other j≠i, and  
pS(i,i) = 1 −∑ j≠i  pS(i,j). 
 
We prove the following. 

• For every S the corresponding Markov chain PS 
converges in polynomial time with respect to the 
height of the tree n. Note that this means that the 
running time is logarithmic in the size of the tree, 
when this size is exponentially big. 

• The stationary distribution of PS is πS(u) = α ⋅ 2n−i, 
where i is the depth of node u and α is the normaliz-
ing factor of πS, i.e. a constant such that                     
∑ u∈V (S)   πS(u) = 1.  

• The normalizing factor can be approximated in 
polynomial time. The exact computation of the 
normalizing factor is hard. 

• The computation of the size of the support can be 
reduced to the computation of the normalizing fac-
tor. However the exact as well as the approximate 
computation of the normalizing factor is hard. 

The last two results seem contradictory. We can approxi-
mate the normalizing factor, and we can reduce the computa-
tion of the size of the support to the computation of the nor-
malizing factor, but we cannot approximate the size of the 
support. The reason why this happens is that the reduction is 
subtractive, and subtractive reductions do not preserve multi-
plicative errors. So if we use the approximation of the normal-
izing factor to approximate the size of the support, the error of 
the latter could be exponentially big. 

A remark arising from our results is the following. Accord-
ing to [3] it is proved that for the uniform distribution over the 
set of solutions to a problem in #P, the tasks of sampling, 
computing the size of the support (aka counting), and compu-
ting the normalizing factor are computationally equivalent. As 
it turns out this is not the case for our distributions. In fact we 
show that an FPRAS for the normalizing factor implies an 
FPRAS for counting if and only if NP=RP. 

A final corollary deriving from our results is a new additive 
error approximation algorithm for any problem in TotP. This 
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algorithm exploits the special characteristics of TotP, and thus 
opens new research directions regarding derandomization. 
Note that an additive error approximation algorithm for prob-
lems in #P is already known ([12], chapter 6.2.2), but its 
derandomization is a long standing open question, proved to 
be as hard as proving circuit lower bounds [13]. See section 6 
for more details on this matter. 

2 PRELIMINARIES 
2.1 #P and TotP 
The model of computation is the non-deterministic polynomi-
al time Turing machine (NPTM). For each NPTM M there is a 
polynomial pM bounding its running time. When an NPTM M 
returns yes or no, we denote accM(x) the number of accepting 
computational paths of M on input x ∈ Σ∗, where Σ is some 
alphabet. 

 
Definition 1. [28] #P is the class of functions f for which there 

exists a polynomial-time decidable binary relation R and a polyno-
mial p such that ∀x ∈ Σ∗, f(x) = {y ∈ {0,1}∗∣|y| = p(|x|) ⋀  
R(x,y)}. Equivalently, #P = {accM : Σ∗→ ℕ  | M is a NPTM}. 

 
Definition 2. FP is the class of functions in #P computable in 

polynomial time. 
 
Definition 3. The decision version of a function in #P is the 

language Lf = {x ∈ Σ∗|f(x) > 0}. 
 
Definition 4. [10] #PE = {f : Σ∗→ ℕ |  f ∈ #P and Lf ∈ P}. 
 
Definition 5. [19] TotP = {totM : Σ∗ → ℕ | M is a NPTM}, 

where totM(x) = #(all computation paths of M on input x) − 1. 
 
The most important theorem about TotP is that TotP con-

tains all self-reducible problems in #P, with decision version 
in P. 

Intuitively a function is self-reducible if we can reduce the 
computation of its value on an instance to the computations of 
its values on a polynomial number of other instances, and the 
depth of this recursion is polynomial. For example #SAT is 
self-reducible, since the number of satisfying assignments of a 
formula ϕ equals the sum of satisfying assignments of two 
formulas ϕ0 and ϕ1, where ϕ0, (respectively ϕ1) is ϕ with its first 
variable fixed to 0 (respectively 1). 

 
Definition 6. A function f : Σ∗→ ℕ  is called poly-time self-

reducible if there exist polynomials r and q, and polynomial time 
computable functions h : Σ∗× ℕ  → Σ∗, g : Σ∗× ℕ  → ℕ , and            
t : Σ∗→ ℕ  such that for all x ∈ Σ∗: 

1. f can be processed recursively by reducing x to a poly-
nomial number of instances h(x,i) (0 ≤ i ≤ r(|x|)), 
i.e. formally  
∀x f(x) = t(x) + (| |)

0
r x
i=∑ g(x,i)f(h(x,i)) 

2. the recursion terminates after at most polynomial depth, 
i.e. formally the depth of the recursion is q(|x|), and  
∀x∀j1,j2,…,jq(|x|)∈{0,…,r(|x|)}   

f(h(…h(h(x,j1),j2)…,jq(|x|))) can be computed in polyno-
mial time. 

3. every instance invoked in the recursion is of poly(|x|) 
size, i.e. formally  
∀x ∀k ≤ q(|x|) ∀j1,j2,…,jk ∈{0,…,r(|x|)} 
|h(…h(h(x,j1),j2)…,jk|∈poly(|x|). 

 
Theorem 1. [1] (a) FP ⊆  TotP ⊆ #PE ⊆ #P. The inclusions are 

proper unless P=NP. 
(b) TotP is the Karp closure of self-reducible #PE functions. 

 

2.2 Size-of-Subtree and #CM-SAT 
We focus on two counting problems, Size-of-Subtree and 
#CM-SAT, that are both TotP-complete under parsimonious 
reductions [4]. 

In this paper we use the convention that the height of a tree 
is the maximum length of a path from the root to a leaf, and 
that the depth of a node is its distance from the root. A tree of 
height n, has n + 1 levels, corresponding to the depths of the 
nodes, and the root is in depth or level 0. 

 
Definition 7. Let T be the perfect binary tree of height n. Let S 

be a subtree of height n containing the root of T, given in succinct 
representation, e.g. by a polynomial computable predicate                
RS : V (T) → {0,1} such that RS(u) = 1 iff u ∈ V (S), where V (⋅) 
denotes the set of vertices. The counting problem Size-of-Subtree is 
to compute the size of V (S) for an input tree S. 

 
We will not give the precise definition of #CM-SAT, see [4]. 

We are just going to describe it in words. #CM-SAT is #SAT 
restricted to formulas with the following special properties. 

Consider a clustering of the space of solutions {0,1}n, where 
each cluster contains all assignments that have their first k var-
iables fixed to some values. A formula of #CM-SAT has got at 
most one satisfying assignment in each cluster, and it is easy 
to decide whether such an assignment exists and, if so, easy to 
find it. 

Moreover, if we label each cluster according to their fixed 
values, then we have the following certain kind of monotonici-
ty among the clusters. Consider a rooted complete binary tree 
with 2k nodes. Suppose you traverse the tree in BFS order put-
ting to each node of the tree a label of a cluster in lexicograph-
ic order (see Fig. 1). Then a formula of #CM-SAT has the 
property that if a cluster has no solutions, then all its descend-
ant clusters (with respect to the tree structure) have no solu-
tions. 

An input to #CM-SAT consists of a number k and a formula 
with the above properties. 

Fig. 1: The complete binary tree 3T . 
The important theorem about #CM-SAT is that #SAT is re-

duced to it under approximation preserving reductions [4]. 
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This means that every formula of SAT can be transformed in 
polynomial time to another formula with the above mentioned 
properties, such that if we can approximate the number of 
satisfying assignments of the second formula, we can also ap-
proximate the number of satisfying assignments of the first 
one. This implies that if can approximate the number of solu-
tions to the second formula, we can actually decide whether 
the first formula is satisfiable. 

 
Theorem 2. [4] #SAT ≤AP #CM-SAT. 
 
Since Size-of-Subtree is TotP-complete under parsimonious 

reductions [4], the results extend to any problem in TotP. For 
an arbitrary problem #A in TotP, there is a tree S such that its 
nodes are in one-to-one correspondence with the solutions of 
A. We will not get into that. For more details see [4]. 

In fact in the presentation of our results we focus on Size-
of-Subtree, but it is easy to see from the problems definitions 
that the results extend to #CM-SAT in a straight forward way: 
The solutions of an input formula of #CM-SAT form a subtree 
of the complete binary tree of height k. Thus such a formula 
can be considered as a succinct representation of an input for 
Size-of-Subtree. 

2.3 Kinds of approximation 
We are concerned with two kinds of approximation, additive 
and multiplicative. Additive refers to the computation of some 
probability, and multiplicative refers to any real quantity we 
want to estimate. We call FPRAS an algorithm with an arbi-
trarily small multiplicative error. 

 
Definition 8. We call FPRAS for a function f : Σ* → ℝ  a prob-

abilistic algorithm A such that for all x ∈  Σ*, and for all     ϵ > 0 
computes a value A(x) in time poly(|x|,ϵ−1) such that  

Pr[(1 - ϵ) f(x) ≤  A(x) ≤  (1 + ϵ) f(x)] ≥  3
4

. 

Definition 9. We call additive approximation to a probability p, 
a number p̂ = p ± ξ, for some ξ ∈  (0,1). In the case of Size-of-Subtree 
the quantity under consideration is p ≡ |S| ∕ 2n. In the case of the 
Circuit Acceptance Probability Estimation problem (CAPE) [13] the 
quantity under consideration is p ≡ #sat. assignments∕2n, where n is 
the number of input gates of the given circuit. 

2.4 Basics of Markov chains 
Let {Xt}t≥0 be a Markov chain over a finite state space X with 

transition probabilities pij. 
Let px(t) be the distribution of Xt when starting from state x. 
Let π be the stationary distribution, and let τx(ϵ) = min{t : 

‖px(t) −π‖≤ ϵ} be the mixing time when starting from state x.  
An ergodic Markov chain is called time reversible if ∀i,j∈X, 

pijπi = pjiπj. 
Let H be the underlying graph of the chain, for which we 

have an edge with weight wij = pijπi = pjiπj for each i,j ∈ X. 
A Markov chain is called lazy if ∀i ∈,pii ≥ 1/2. 
In [3] the conductance of a time reversible Markov chain is 

defined, as follows.  
 
Definition 10. (Conductance) Let Y ⊆ X. We define 

,( )
ij

i Y j Y

i
i Y

w
Y

π
∈ ∉

∈

Φ =
∑

∑
 

The conductance of the Markov chain is 
( ) min ( )H YΦ = Φ   

where the minimum is taken over all Y ⊆ X such that 
0<∑i∈ Yπi≤1/2.  

 
Lemma 1. [3] For any lazy, time reversible Markov chain  

1 1
2

1( ) (log log )
( )x xconst
H

τ ε π ε− − 
≤ × + 

Φ 
. 

 
Lemma 2. For any Markov chain, and any Y ⊆ X with π(Y )≤1/2   

1
4 ( )mix Y

τ ≥
Φ

 

3 THE SIMPLE RANDOM WALK ON THE PERFECT BINARY 
TREE 

Consider the simple random walk R on a full complete binary 
tree T of height n. I.e. the transition probabilities are  
 
r(i,j) = 1∕3 for all i≠j,  
r(i,i) = 1∕3 for i=root,  
r(i,i) = 2∕3 for i=leaf, and 
r(i,i) = 0 in any other case. 

 
Theorem 3. The simple random walk W converges to the uni-

form distribution U(i) = 1(2 1)n −−  for every node i. 
Proof. It is easy to check that for all nodes i,j  

( ) ( , ) ( )iU i r i j U j=∑ . 
□ 

Theorem 4. The mixing time of W is exponential in n. 
Proof. Let Y be the set of nodes of the left subtree of T. 

1 1( )
2 2 1nU Y = −

−
. There is only one edge e = (i,j) leaving from Y ; 

i is the left child of the root, and j is the root. The edge e has 

weight we = rijUi = 1 1
3 2 1n −

. Thus Φ(Y ) ≤ 1/2, and so from 

lemma 2 we have τmix ≥ 3(2 3)
8

n − . 

 □ 

3 A RAPIDLY MIXING MARKOV CHAIN ON THE PERFECT 
BINARY TREE 

Consider a Markov chain Q on the perfect binary tree T of 
height n, with transition probabilities 
  
q(i,j) = 1∕2 if j is the parent of i,  
q(i,j) = 1∕4 if j is a child of i,  
q(i,j) = 0 for every other j≠i, and  
q(i,i) = 1 −∑ j≠ipS(i,j). 

 
Theorem 5. The stationary distribution of Q is 

πQ(v)=2−depth(v)(n+1)−1 for all v. 
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Proof. It is easy to check that for all nodes i,j  
( ) ( , ) ( )Q Qi i q i j jπ π=∑ . 

 □ 
Theorem 6. The mixing time of Q when starting form the root, 

is polynomial in n, thus logarithmic in the size of T. 
Proof. Let {Lt}t≥0 be a Markov chain on a path with n + 1 

nodes, defined as Lt = depth(Qt), where depth(v) denotes the 
depth of node v in T. The transition probabilities of L are 

1 1( , ) Pr[ | ] Pr[ ( ) | ( ) ]t t t tl i j L j L i depth Q j depth Q i− −= = = = = =  
thus  
l(i,j) = 1∕2 for all i≠j,  
l(0,0) = l(n,n) = 1∕2. 

So L is a simple random walk on a path of length n + 1. Its 
stationary distribution is the uniform over the nodes of the 
path and its mixing time is polynomial in n. The latter is well 
known, but for the sake of completeness we present briefly a 
proof: 

First we consider the lazy version of the chain, i.e. with 
probability 1∕2 we do nothing, and with probability 1∕2 we fol-
low the rules of L. Conductance Φ(Y ) is minimized for Y1 = 
{0,1,...,⌊(n+1)/2 ⌋}, w(n+1)/2,(n+1)/2+1 =1/2(n+1) , so Φ(Y1) ≥ 
1/(n+1). Thus from lemma 1 for ϵ = 1/4 we get that the mixing 
time, starting form any initial node x, is O(n2 log n). 

We return to the proof of the theorem. When L has mixed 
to its stationary distribution, Q has mixed to a distribution that 
is uniform over the levels of T. To complete the proof observe 
that the symmetries of the perfect binary tree imply that when 
starting from the root, for every step t, the distribution of Qt 
depends only on the depth of the nodes, i.e. the probability 
Pr[Qt = v] is the same for all v in the same depth. The latter 
can also be proved by induction in t.  

So at the time that L has mixed to the uniform distribution, 
Q has mixed to πQ. 

 □ 

5 A GENERALIZATION FOR AN ARBITRARY BINARY TREE 
We generalize the Markov chain of the previous section to 

an arbitrary binary tree, not necessarily full or complete. I.e. 
the state space consists of the nodes of a tree of height n, and 
the transition probabilities are as in the previous section.  

 
Definition 11. Let S be a subtree of the perfect binary tree T of 

height n, containing the root of T. We define the Markov chain PS 
over the nodes of S, with the following transition probabilities. 
pS(i,j) = 1∕2 if j is the parent of i,  
pS(i,j) = 1∕4 if j is a child of i,  
pS(i,j) = 0 for every other j≠i, and  
pS(i,i) = 1 −∑ j≠ipS(i,j). 
 

5.1 Stationary distribution and mixing time. 
Consider the following family of distributions (πS)S. 

 
Definition 12. Let S be a binary tree of height n and let V (S) be 

the set of nodes of S. For all u ∈ V (S) πS(u) = αS ⋅ 2n−i, where i is the 
depth of node u and αS is the normalizing factor of πS, i.e. a constant 
such that ∑ u∈V (S)πS(u) = 1. 

 

Theorem 7. The stationary distribution of PS is πS as defined in 
12.  

Proof. It is easy to check that  
( ) ( , ) ( )S S Si i p i j jπ π=∑ . 

 □ 
Note For simplicity of notations from now on we will as-

sume that S is fixed and omit it from the subscripts in 
PS,pS,πS,αS, unless we refer to more than one tree in the same 
proof. 

Now we will prove that P is rapidly mixing, i.e. mixes in 
time polynomial in the height of the tree S.  

The following lemma proves two properties of the Markov 
chains we defined, needed for the proofs that will follow.  

 
Lemma 3. Let R be a binary tree of height n, and let αR be the 

normalizing factor of the stationary distribution πR of the above 
Markov chain (def. 11, 12). It holds αR−1 ≤ (n + 1)2n, and πR(root) ≥ 
1/(n+1). 

Proof. Let ri be the number of nodes in depth i. 

0 ( ) 0
1 ( ) ( ) 2

n n
n i

R R i R
u S i level u i i

u u r aπ π −

∈ = = =
= = =∑ ∑ ∑ ∑  

0

1 2
n

n i
i

R i
r

a
−

=
⇒ =∑  

which is maximized when the ri’s are maximized, i.e. when 
the tree is perfect binary (lets say T), in which case ri = 2i and 
αT −1 = (n+1)2n. This also implies that for the root of R it holds 
πR(root) = αR ⋅ 2n ≥ 1/(n+1). 

 □ 
Proposition 1. The mixing time of P, when starting from the 

root, is polynomial in the height of the tree n. 
Proof. First of all, we will consider the lazy version of the 

Markov chain, i.e. in every step, with probability 1∕2 we do 
nothing, and with probability 1∕2 we follow the rules as in def-
inition 11. The mixing time of P is bounded by the mixing time 
of its lazy version. The stationary distribution is the same. The 
Markov chain is time reversible, and the underlying graph is a 
tree with edge weights wuv = πupuv = 2iα × 1/8 = 2i−3α, if we 
suppose that u is the father of v and 2iα is the probability πu.  

The quantity πroot−1 is O(n), as we showed in lemma 3. 
Now it suffices to show that 1∕Φ(H) is polynomial in n. 
Let X be the set of the nodes of S, i.e. the state space of the 

Markov chain P. We will consider all possible Y ⊆ X  with 0 ≤ 
π(Y ) ≤ 1∕2. We will bound the quantity  

,( )
ij

i Y j Y

i
i Y

w
Y

π
∈ ∉

∈

Φ =
∑

∑
 . 

If Y is connected and does not contain the root of S, then it 
is a subtree of S, with root let say u, and πu = α2k for some 
k∈ℕ . We have 

2
, ( )

,
2k

ij u father u
i Y j Y

w w a−

∈ ∉
≥ =∑ . 

Now let Y ′ be the perfect binary tree with root u and height 
the same as Y , i.e. k. We have 

' 0
2 2

k
k j j

i i
i Y i Y j

aπ π −

∈ ∈ =
≤ = × =∑ ∑ ∑  
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2 ( 1) 2 ( 1)k kk a n a+ ≤ +  
where this comes if we sum over the levels of the tree Y ′. 

So it holds 
22 1

4( 1)2 ( 1)

k
ij

k
i

w a
nn aπ

−

≥ =
++

∑
∑

. 

If Y is the union of two subtrees of S, not containing the 
root of S, and the root of the first one is an ancestor of the root 
of the second one, then the same arguments hold, where now 
we take as u the root of the first subtree. 

If Y is the union of λ subtrees not containing the root of S, 
for which it holds that no one’s root is an ancestor of any oth-
er’s root, then we can prove a same bound as follows. Let 
Y1,...Yλ be the subtrees, and let k1,k2,...,kλ, be the respective 
exponents in the probabilities of the roots of them, in the sta-
tionary distribution. Then as before 

22 21 22 2 ... 2kk k
ijw a a aλ −− −≥ + + +∑  

and 

1...
2 ( 1)k j

i i
i Y j i Y j

n a
λ

π π
∈ = ∈

= ≤ +∑ ∑ ∑  

thus 
2

1...

1...

2 1
4( 1)( 1) 2

k j
ij j

k j
i j

aw
nn a

λ

λ
π

−
=

=

≥ =
++

∑∑
∑ ∑

. 

If Y is a subtree of S containing the root of S, then the com-
plement of Y , i.e. S \ Y is the union of λ subtrees of the previ-
ous form. So if we let Y i,ki be as before, then 

2

1...
2k j

ij
j

w
λ

−

=
=∑ ∑  

and since from hypothesis π(Y ) ≤ 1∕2, we have 

\ 1...
( 1) 2k j

i i
i Y i S Y j

n a
λ

π π
∈ ∈ =

≤ ≤ +∑ ∑ ∑  

thus the same bound holds again. 
Finally, similar arguments imply the same bound when Y is 

an arbitrary subset of S i.e. an arbitrary union of subtrees of S. 
In total we have 1∕Φ(H) ≤ 4(n + 1). 

 □ 
Note that this result implies mixing time O(n2 log n). This 

agrees with the theorem in the previous section, stating that 
on the full binary tree the mixing time should be as much as 
the mixing time of a simple random walk over the levels of the 
tree, i.e. over a chain of length n. 

5.2 The complexity of computing the normalizing factor 
 
We analyse the complexity of exactly and approximately com-
puting the normalizing factors of the family of distributions 
(πS)S (def 12). 

 
Theorem 8. Computing the normalizing factor αS of any distri-

bution πS in the family of def. 12 
1) is TotP-hard under Turing reductions,  
2) FPRAS is possible, i.e. approximation with arbitrarily small 

multiplicative error, 
3) exact computation is impossible deterministically (or respec-

tively probabilistically) if NP ≠ P (or respectively NP ≠ RP). 
Proof. 
1) We will reduce the computation of the size of S to the 

computation of the normalizing factors of the above probabil-
ity distributions (πS)S. The reduction is Turing (i.e. the most 
general kind of reduction, as opposed to other kinds of reduc-
tions with extra properties, like the parsimonious ones). Since 
Size-of-Subtree is TotP-complete under parsimonious reduc-
tions, we conclude that computing the normalizing factor is 
TotP-complete under Turing reductions. It remains to show 
the following proposition. 

Proposition 2. Let S be a binary tree of height n, and ∀i = 0...n, 
let Si be the subtree of S that contains all nodes up to depth i, and let 
αSi be the corresponding normalizing factors defined as above. Then 

1

0

1 1| |
n

S Skn k

S
a a

−

=
= − ∑

. 
Proof of Proposition 2. For i = 1,...,n let ri be the number of 

nodes in depth i. So |S| = r0 + ... + rn.  
Obviously if S is not empty,  

 0
0

11
S

r
a

= =  (1.1) 

We will prove that ∀k = 1...n 

 
1

1 12k
S Sk k

r
a a

−

= −  (1.2) 

so then 

11 10 1

1 1 1 1 1| | 2
n n

S S S kk kk S nk

S
a a a a a −= =−

 
 = + − = −
 
 

∑ ∑ . 

We will prove claim (1.2) by induction. 
For k = 1 we have 

1 01 1 1
1

( ) 1 2 1S S S
u S

u a r a rπ
∈

= ⇒ ⋅ + ⋅ = ⇒∑  

1 0
1 1 0

1 1 12 2
S S S

r r
a a a

= − = − . 

Suppose claim (1.2) holds for k < i ≤ n. We will prove it 
holds for k = i. 

0
( ) 1 2 1

i
i k

S S ki i
u S ki

u a rπ −

∈ =
= ⇒ ⋅ = ⇒∑ ∑  

1

0

1 2
i

i k
i k

S ki

r r
a

−
−

=
= − ∑  

and substituting rk for k = 0,...,i − 1 by (1.1) and (1.2), we 
get  

1

1 12i
S Si i

r
a a

−

= − .  

(end proof Prop. 2)□ 
 

2) Now we give an FPRAS for the computation of the nor-
malizing factor αS, using the previously defined Markov chain 
PS .  

Proposition 3. For any binary tree R of height n we can estimate 
αR, within (1 ± ζ) for any ζ > 0, with probability 1 − δ for any δ > 0, 
in time poly(n,ζ−1,log δ−1).  

Proof of Proposition 3. Let R be a binary tree of height n. 
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We can estimate αR as follows.  
As we saw, πR(root) = 2nαR, and we observe that this is al-

ways at least 1/(n+1) (which is the case when R is full binary). 
So we can estimate πR(root) within (1 ± ζ) for any ζ > 0, by 
sampling m nodes of R according to πR and taking, as esti-
mate, the fraction = 1

m
i=∑ Xi, where Xi = 1 if the i-th sample 

node was the root, else Xi = 0.  
It is known by standard variance analysis arguments (see 

e.g. the unbiased estimator theorem in [11]) that we need m = 
O(πR(root) ⋅ ζ−2) = poly(n,ζ−1) to get  

[ ] 1ˆPr (1 ) ( ) (1 ) ( )
3R Rroot p rootζ π ζ π− ≤ ≤ + ≥ . 

We can boost up this probability to 1 − δ for any δ > 0, by 
repeating the above sampling procedure t = O(log δ−1) times, 
and taking as final estimate the median of the t estimates 
computed each time, (see the median trick in [11]).  

The random sampling according to πR can be performed by 
running the Markov chain defined earlier, on the nodes of R. 
Observe that the deviation ϵ from the stationary distribution 
can be negligible and be absorbed into ζ, with only a polyno-
mial increase in the running time of the Markov chain.  

Finally, the estimate for αR is ˆ ˆ2 n
Ra p−= , and it holds  

[ ]ˆPr (1 ) (1 ) (1 )R R Ra a aζ ζ δ− ≤ ≤ + ≥ − . 
(end proof Prop. 3)□ 

 
3) The third part of theorem 8 is proved as follows. #IS is 

the problem of counting the number of all independent sets (of 
all sizes) of an input graph. #IS ∈ TotP. If NP≠P (respectively 
NP≠RP) then #IS does not admit FPTAS (respectively FPRAS) 
[14], [2].  

Since the computation of the normalizing factors of the 
family of distributions (πS)S is TotP-hard, #IS is reduced to it, 
so if we could exactly compute the normalizing factors of (πS)S, 
we could also compute exactly #IS, which would imply NP=P 
(respectively NP=RP if the computation is randomised). 

□ 

5.3 The complexity of computing the size of the 
support 

We analyse the complexity of computing the size of the 
support of the family of distributions (πS)S (def. 12). We then 
discuss two remarks that result from this analysis.  

 
Theorem 9. Computing the size of the support of any distribu-

tion in family (πS)S (def. 12)  
1) is TotP-complete under parsimonious reductions,  
2) reduces to exactly computing the normalizing factors,  
3) additive error approximation (see def. 9) is possible in random-

ized polynomial time, (note that the size of the support is in 
general exponential in n),  

4) exact computation is impossible deterministically (or respec-
tively probabilistically) if NP ≠ P (or respectively NP ≠ RP),  

5) multiplicative polynomial factor approximation is impossible 
deterministically (or respectively probabilistically) iff NP ≠ P 
(or respectively NP ≠ RP).  

Proof.  
1) From definition 12, a positive probability is given to 

every node of the corresponding input tree S, so the size of the 

support equals exactly the size of the tree. The statement of the 
theorem follows from the TotP-completeness of Size-of-
Subtree under parsimonious reductions [4].  

 
2) The statement follows from proposition 2.  
 
3) We first prove the following proposition.  
 
Proposition 4. For all ξ > 0,δ > 0 we can get an estimate |Ŝ| of 

|S| in time poly(n,ξ−1,log δ−1) such that  
ˆPr 2 2 1n nS S Sξ ξ δ − ≤ ≤ + ≥ −  . 

Proof of Proposition 4. Let ζ = ξ/(2(n+1))  and C= ζ/(1+ζ) , 
thus poly( ε −1) = poly(ζ−1) = poly(n,ξ−1).  

So according to proposition 3 we have in time poly(n,ξ−1,log 
δ−1) estimations ∀i = 1,...,n  

 ˆ(1 ) (1 )S S Si i ia a aε ε− ≤ ≤ +  (1.3) 

We will use proposition 2. Let 1/ Sn
A a=  and 

1
01/n

SkkB a−
=

=∑ , so |S| = A − B, and clearly B ≤ A.  

From (1.3) we have (1/1+ ε )A ≤Â ≤1/(1- ε )A ⇔  
(1 −ζ)A ≤Â ≤ (1 + ζ)A and similarly (1 − ζ)B ≤ B̂  ≤ (1 + ζ)B.  
Thus (1 − ζ)A − (1 + ζ)B ≤Â − B̂  ≤ (1 + ζ)A − (1 − ζ)B ⇔  
A − B − ζ(A + B) ≤Â − B̂  ≤ A − B + ζ(A + B), and since A ≥ 

B, we have  
|S|− 2ζA ≤|Ŝ|≤|S| + 2ζA. And since from lemma 3 the 

maximum A is 2n(n + 1), we have  
|S|− 2ζ(n + 1)2n ≤|Ŝ|≤|S| + 2ζ(n + 1)2n ⇔  
|S|− ξ ⋅ 2n ≤|Ŝ|≤|S| + ξ ⋅ 2n.  

(end proof Prop. 4)□ 
 

To conclude the proof, let p = |S|/ 2n . For all ξ > 0, δ > 0 
we can get an estimation in time poly(n,ξ−1,log δ−1) such that  

ˆPr[ ] 1p p pξ ξ δ− ≤ ≤ + ≥ −  
which satisfies the definition of additive approximation for 

|S|, i.e. the size of the support of πS.  
 
4) The arguments are simiral to those for the third part of 

theorem 8. #IS ∈ TotP and does not admit FPTAS (respectively 
FPRAS) if NP≠P (respectively NP≠RP) [14], [2].  

From the hardness of computing the size of the support of 
(πS)S, it turns out that we cannot compute it exactly, else we 
could also compute exactly #IS, which would imply NP=P 
(respectively NP=RP if the computation is randomised).  

 
5) Fact 1: If NP=RP then all problems in TotP admit an FPRAS.  
Proof of fact 1: In [6] Stockmeyer has proven that an 

FPRAS, with access to a 2
pΣ  oracle, exists for any problem in 

#P. If NP=RP then 2
pΣ = RPRP ⊆ BPP. Finally it is easy to see 

that an FPRAS with access to a BPP oracle, can be replaced by 
another FPRAS, that simulates the oracle calls itself.  

Fact 2: If NP≠RP then it is impossible to have an FPRAS for 
every problem TotP.  

Proof of fact 2: The problem #IS is inapproximable if 
NP≠RP, and it belongs to TotP.  

Finally, it is proven that for any self reducible problem in 
#P, an algorithm with a polynomial multiplicative error can be 
transformed to FPRAS [3].  
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Since the computation of the size of the support of πS is 
TotP-complete under parsimonious reductions, we conclude 
that it admits a polynomial multiplicative approximation algo-
rithm if and only if NP=P (respectively NP=RP if the algo-
rithm is randomised). 

□ 

6 Remarks and further research 
Remark 1. We have considered three computational tasks 

related to any probability distribution: sampling, computing 
the normalizing factor, and computing the size of the support. 
For the uniform distribution the normalizing factor is a multi-
ple of the size of the support, and sampling is equivalent to 
existence of FPRAS for the size of the support [3]. However for 
a general distribution not only their complexity is unknown; it 
is even unclear whether these three tasks are equivalent or not.  

For the family of distributions we studied here (definition 
12) it turns out that the three tasks are not all equivalent unless 
NP=RP.  

We also showed that exact computation of the size of the 
support reduces to exactly computing the normalizing factor 
(fact 2), but not under approximation preserving reductions. 
The previous arguments imply that such an approximation 
preserving reduction, between the two tasks, exists if and only 
if NP=RP.  

Open problem 1. Thus it is an open problem equivalent to 
NP vs RP the existence of an approximation preserving reduc-
tion of the computation of the size of the support to the com-
putation of the normalizing factors of distributions (πS)S (def. 
12).  

Remark 2. We showed how to get a probabilistic additive 
approximation to the problem Size-of-Subtree. We should 
mention that an additive approximation could be also ob-
tained by a simple random sampling process that chooses m = 
poly(n) nodes of the full binary tree T of height n uniformly at 
random, and takes as estimate of the size of S, the proportion 
of those m samples that belong to S. This is an application of 
the general method of [12] chapter 6.2.2.  

Our alternative method exploits some special characteris-
tics of TotP, and thus cannot be generalized for every problem 
in #P.  

It is known that derandomizing the general simple method 
is as difficult as proving circuit lower bounds [13]. However 
we don’t know a similar relationship between circuit lower 
bounds and deterministic additive approximation, restricted 
to problems in TotP, thus it might not be equally difficult to 
derandomize our method.  

Open problem 2. It is an open problem how to derandom-
ize the additive error approximation algorithms for the size of 
the support, in subexponential time. This would yield a de-
terministic solution of the CAPE problem (see def. 9), within 
additive approximation, for families of circuits, for which 
counting the number of accepting inputs is in TotP, (we will 
call it TotP-CAPE.)  

Note that the best (exact, and additive error) deterministic 
algorithm known for CAPE, on an arbitrary circuit, is by ex-
haustive search. Derandomizing it faster than the exhaustive 
search algorithm, i.e. even in time 2γnpoly(n) for some γ < 1, 
would yield NEXP ⊈ P/poly [13]. The latter is a long standing 

conjecture.  
Open problem 3. A final open problem, is whether we can 

achieve derandomization of the same task  in polynomial time. 
Such a result would also imply a solution to the CAPE prob-
lem in deterministic polynomial time for depth-two AC0 cir-
cuits (i.e. DNF’s and CNF’s). The best deterministic algorithm 
known until now is of time nO(log log n) [16]. (For more on AC0-
CAPE, see the survey [17] p.13, and [18] for an older result.) 

7 Related work 
TotP is defined in [19], some of its properties and relation-

ships to other classes are studied in [1], [10], [20], and com-
pleteness is studied in [4].  

Regarding the Size-of-Subtree: In [5] Knuth provides a 
probabilistic algorithm practically usefull, but with an expo-
nential worst case error. Modifications and extensions of 
Knuth’s algorithm have been presented and experimentaly 
tested in [21], [22], [23], without signifcant improvements for 
worst case instances. There are also many heuristics and ex-
perimental results on the problem ristricted to special back-
tracking algorithms, or special instances, see e.g. [24] for more 
references. Surprisingly there exist FRAS’s for random models 
of the problem [25], [26]. In [27] quantum algorithms for the 
problem are studied. In [6] Stockmeyer provided uncondi-
tional lower bounds for the problem under a model of compu-
tation which is different from the Turing machine, namely a 
variant of the (non-uniform) decision tree model.  

The relationship between approximate counting and uni-
form sampling has been studied in [3].  

There are numerous papers regarding algorithmic and 
hardness results for individual problems in #P and TotP, e.g. 
[28], [29], [30], [2], [31]. However, apart from the backtracking-
tree problem, other TotP-complete problems have not been 
studied algorithmically yet.  

There is also a huge literature on Markov chains and com-
putational questions related to them, like those considered in 
this paper, i.e. determining the mixing time, the stationary 
distribution, and the complexity of computing the partition 
function (i.e. the normalizing factor) of the stationary distribu-
tion. Such algorithms are known e.g. as Glauber dynamics, 
Gibbs sampling, Metropolis - Hastings algorithm, etc 
[32], [33], [34]. These Markov chains are designed for individ-
ual problems that concern the computation of a weighted sum 
over the set of solutions to a combinatorial problem. Such 
problems are for example the hard-core model and the Potts 
model from statistical physics. The literature on this matter is 
enormus, we mention only indicatevely 
[35], [36], [37], [38], [39], [40]. 
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